
Closing the Loop Between
Dev and Analytics

AWS User Group
Zach Miller - 4/25/2019
Senior DS @ CreditNinja

What does closing the loop mean?

● Both Dev and Analytics need to be empowered to be efficient
● Both teams need to share data
● We’re going to talk about why that can be a struggle…
● … and some architecture choices we can make to help

Who am I?

● Data scientist that also cares about
writing software that is palatable

Who am I?

● Data scientist that also cares about
writing software that is palatable

● Math nerd

Who am I?

● Data scientist that also cares about
writing software that is palatable

● Math nerd
● Recovering academic

Who am I?

● Data scientist that also cares about
writing software that is palatable

● Math nerd
● Recovering academic
● Big fan of efficiency when possible

Who am I?

● Data scientist that also cares about
writing software that is palatable

● Math nerd
● Recovering academic
● Big fan of efficiency when possible
● In the data analysis space for more

than a decade

Who am I?

● Data scientist that also cares about
writing software that is palatable

● Math nerd
● Recovering academic
● Big fan of efficiency when possible
● In the data analysis space for more

than a decade
● I’ve spent a LOT of time doing

things in very dumb ways

Who am I?

● Data scientist that also cares about
writing software that is palatable

● Math nerd
● Recovering academic
● Big fan of efficiency when possible
● In the data analysis space for more

than a decade
● I’ve spent a LOT of time doing

things in very dumb ways
● In my current role, I sit somewhere

between analytics and dev

Let’s start out a bit weirdly

Let’s walk through a bit of my career together, seeing all the ways you
shouldn’t organize dev and analytics teams.

1. This will be an instructive overview of what choices we should be
making in designing infrastructure.

Let’s start out a bit weirdly

Let’s walk through a bit of my career together, seeing all the ways you
shouldn’t organize dev and analytics teams.

1. This will be an instructive overview of what choices we should be
making in designing infrastructure.

2. None of this is ground-breaking, but I think it’s something we, as a
community, don’t give enough thought to.

Let’s start out a bit weirdly

Let’s walk through a bit of my career together, seeing all the ways you
shouldn’t organize dev and analytics teams.

1. This will be an instructive overview of what choices we should be
making in designing infrastructure.

2. None of this is ground-breaking, but I think it’s something we, as a
community, don’t give enough thought to.

3. You’re a captive audience that now has to listen to me talk about my
dissertation, whether you want to or not.

physics

Good ol’ weapons
grade uranium.

People who give even the
remotest of craps about this data.

A Venn Diagram about
this research

People who give even the
remotest of craps about this data.

People who are me

A Venn Diagram about
this research

This allows me to make specific choices

1. All the data will live on a (backed up) hard drive
2. I’m going to store the data in a way that makes sense for my specific

analysis
3. Screw metadata
4. Everything is numeric and I’m using an archaic piece of software to run

my analysis, so I’m going to store the data how that software likes it

This is essentially the “Young Business” Scenario

The Dev team is the Analytics team is the Engineering
team is the database admin.

There is no difference between what the devs want and
what the analysts want.

Data Event Data Cleaning Data Storage Analysis

Data Flow is simple in this case

Data Event Data Cleaning Data Storage Analysis

Data Flow is simple in this case

SageMaker

Data Event Data Cleaning Data Storage Analysis

Data Flow is simple in this case

SageMaker

This makes me happy inside because it’s simple and elegant.

It’s also extremely unrealistic for any real organization.

Pros of this type of
system

● Efficient for its purpose
● Little room for

hand-shaking errors
● Few rabbit holes
● It has one job, and does

that job well

Cons of this type of
system

● Literally everything else

● Not scalable
● No room for flexible data

usage
● Can’t exist outside a

vacuum

Before we move on…

Before we move on… check out this sweet plot.

The ones in red are fissions that generated enough energy to be part of a nuclear
chain reaction (if we had critical mass)

At this point, I moved on to a larger
organization where I was working with a much
larger team

STAR Detector

● 14+ Systems generating data
● 500+ people analyzing data
● 30+ institutions
● Generates several TB of data

per day

● 1 really big nightmare for
data management

STAR Detector

Each line is constructed from about 150 data points. All of these lines happened for a
single particle collision and only exist for about 12 ns. We recorded several thousand
of these events per second, 24 hours per day, for several months per year.

Two types of teams

Detector Teams

● Want ability to see live performance
● Need to store data in quick recall

locations
● Don’t give a damn about format, just

tell me if it works
● More interested in acquiring and

actioning on the data than deciding
what it means

● REALLY into JSON

Two types of teams

Detector Teams

● Want ability to see live performance
● Need to store data in quick recall

locations
● Don’t give a damn about format, just

tell me if it works
● More interested in acquiring and

actioning on the data than deciding
what it means

● REALLY into JSON

Analysis Teams

● Want the data to be stable long term
● Care a lot about “preserving the

integrity of the data”
● PUT IT IN THE FORMAT I NEED OR

I’LL CUT YOUR CHILDREN
● Worried about small fluctuations in

how the data is stored and whether it’s
meaningful

● More concerned about the event itself
than the tools used to process it

Two types of teams

Detector Teams

● Want ability to see live performance
● Need to store data in quick recall

locations
● Don’t give a damn about format, just

tell me if it works
● More interested in acquiring and

actioning on the data than deciding
what it means

● REALLY into JSON

Analysis Teams

● Want the data to be stable long term
● Care a lot about “preserving the

integrity of the data”
● PUT IT IN THE FORMAT I NEED OR

I’LL CUT YOUR CHILDREN
● Worried about small fluctuations in

how the data is stored and whether it’s
meaningful

● More concerned about the event itself
than the tools used to process it

Two types of teams

Analysis Teams

● Want the data to be stable long term
● Care a lot about “preserving the

integrity of the data”
● PUT IT IN THE FORMAT I NEED OR

I’LL CUT YOUR CHILDREN
● Worried about small fluctuations in

how the data is stored and whether it’s
meaningful

● More concerned about the event itself
than the tools used to process it

COUGH DEV *COUGH*

● Want ability to see live performance
● Need to store data in quick recall

locations
● Don’t give a damn about format, just

tell me if it works
● More interested in acquiring and

actioning on the data than deciding
what it means

● REALLY into JSON

Knowing full well that our Dev team is in the
audience and have a large amount of control
over the data I need...

● I’m not saying one side is right or wrong. They do have often competing
priorities though. So the rest of this talk is going to be about how
systems can be designed to accommodate those priorities, and how
AWS gives us a lot of tools to make that happen.

System A (as designed by detector teams)

Data
Event

System A (as designed by detector teams)

Monitoring
System

Data
Event

Raw
Value

System A (as designed by detector teams)

Monitoring
System

Data
Event

Raw
Value

Ambient
Information

Small Scale
Analysis

System A (as designed by detector teams)

Monitoring
System

Data
Event

Raw
Value

Ambient
Information

Small Scale
Analysis

Short-Term QA
Storage

System A (as designed by detector teams)

Monitoring
System

Data
Event

Raw
Value

Ambient
Information

Small Scale
Analysis

Short-Term QA
Storage

Long-Term,
High

Capacity
Storage for
Raw Data

Data flow becomes complicated

In this type of system, the devs are “creating” or “extracting data” from consumers,
and the analysts have to then make sense of that data.

The way the devs handle data is different than the way analysts might want to.

The system is complicated, so it’s not straightforward to just go to a table and say,
“tell me what you know.”

System A (as designed by detector teams)

Monitoring
System

Data
Event

Raw
Value

Ambient
Information

Small Scale
Analysis

Short-Term QA
Storage

Dev Concerns:

All of this needs to run in
500ms or so, all I have
time for is some cursory
checks and then the next
event must be
processed.

I don’t want to maintain
25 different schemas
that change whenever
the data does.

System A (as designed by detector teams)

Long-Term,
High

Capacity
Storage for
Raw Data

Analytics Concerns:

Does any of this
manipulation change the
raw data?

Will the data be stored in
a format where I can
process the data and use
it to build models?

ETL is your friend

+

The competing priorities make sense. Neither team should
give up the ability to be efficient.

Create a middle man to solve the issue. Glue can read,
unpack, and generally do whatever ETL you need in order
to translate between the two environments.

ETL is your friend

+

DEV
Team

Analytics
Team

So far we’ve talked
about a single system

No business (or research
group) runs on a single
system.

● 14+ systems
● ~1,000,000

sensitive detectors
per system

How the hell do we
merge all of that?

System
A

The whole system

System
B

System
C

System
D

Detecting
charged
particles

Detecting
uncharged
particles

Controlling
the particle
accelerator

Measuring
ambient
radiation

System
A

The whole system

System
B

System
C

System
D

Processing
customer
orders

Running
A/B tests on
website

Monitoring
customer
clicks

Charging
credit cards

System
A

The whole system (as seen by analytics)

System
B

System
C

System
D

A_feat1 A_feat2 A_feat3 B_feat1 B_feat2 B_feat3 B_feat4 ... D_feat9

12 0.5 11 Reginald 42 11teen 7.5 ... True

11 0.0001 NaN Steven 42 C100 9.6 ... False

System
A

The whole system

System
B

System
C

System
D

System
A

The whole system

System
B

System
C

System
D

System
A

The whole system

System
B

System
C

System
D

System
A

The whole system

System
B

System
C

System
D

Storage is typically cheap (now-a-days), and many-to-many join
systems can make systems infinitely more navigable.

Having a master database (or table) that knows about the doings of
all of the systems through clever logging can make a system usable,
scalable, and accessible to folks with the ability to SQL.

Develop Tooling to Maximize Efficiency

The Data Retrieval
Tool That Actually
Works SometimesTM

I need all the
particles from
04/22/2019

Develop Tooling to Maximize Efficiency

The Data Retrieval
Tool That Actually
Works SometimesTM

Develop Tooling to Maximize Efficiency

The Data Retrieval
Tool That Actually
Works SometimesTM

Develop Tooling to Maximize Efficiency

The Data Retrieval
Tool That Actually
Works SometimesTM

imp ort ant

ma ny nu

mb ers here

Develop Tooling to Maximize Efficiency

The Data Retrieval
Tool That Actually
Works SometimesTM

There will be dev work in the TDRTTAWSTM in order to make sure that the
analysts aren’t spending their time fighting unnecessary battles they
aren’t the best team to solve.

That is valuable time and work.

And what should analytics be doing?

So far, we’ve largely talked about architecting your system to minimize
conflict between dev and analytics from the dev side.

Analytics isn’t innocent in this ‘battle’ though… let’s return to our System A
and make it a bit less physics-y

System for Customers

Monitoring
System

Data
Event

Raw
Value

Ambient
Information

Small Scale
Analysis

Short-Term QA
Storage

Hey analytics /
modeling team…

WHAT DO?

Customer Path
A

Customer Path
B

Customer Path
C

Customer Path
D

Culture Shift

● At some point in the last few years, data scientists have gotten a bit
diva-y.

● “I only make the models/decisions, I don’t have to worry about how
they get deployed.”

● Analytics teams: meet microservice ideology

System for Customers

Monitoring
System

Data
Event

Raw
Value

Ambient
Information

Small Scale
Analysis

Short-Term QA
Storage

Model
Container A

Model
Container B

Model
Container C

Model
Container D

Microservices

● This style of infrastructure has drawbacks, but it’s the best way to make sure
that many teams can play together without fighting.

● If every piece is a module, then analytics can design the modules they need, and
dev can swap them in and out.

● Each piece of data management becomes a battery pack that one team can own.
● This can be models, ETL, database cleaning, whatever

Devs want…

The customer to flow
through the service/product
neatly

Fast response time, no
errors

Useful logging

Not to bother with a bunch
of finnicky crap to make the
data “just right”

Analysts want…

Good, clean data that truly
represents the consumer

Data that’s in a format that
is easy to use for analysis

The ability to get their
discoveries into production

A platform that supports
their ability to access and
convert data into insights

Summarizing

Both want…

A platform that isn’t a hassle,
and gets “out of the way” to
let them do their job.

Data to be collected
consistently, and errors to be
minimal.

Infrastructure that doesn’t
make them weep.

And the business to succeed

Summarizing

Summarizing

● There are two (or more) sorts of systems:
○ The dev is the analyst
○ The dev ‘creates’ data for the analyst to consume

● Respecting these competing priorities makes for a better system
● Creating ‘middlemen’ to translate between these priorities is wise
● ETL is your friend
● Designing tooling is your friend
● Strong database design is your friend
● Microservices are your friend

There’s way more stuff you can be doing

● Using shared cluster computing environments for ETL and analytics work helps
maintain a consistent environment (AWS EMR)

● Maintaining a data lake on S3 with just the raw data seen by Dev means there’s
always a ground truth (AWS Athena/S3/Glue)

● Long term data storage for rarely accessed data (Glacier)
● Serverless architecture to make the dev requirements lighter on the analytics

team (Lambda)
● Using SageMaker deployments to make model deployment self-managed by

analytics (Sagemaker)
● Etc etc.

Note: CreditNinja is currently
hiring Data Scientists and Devs

Questions?

